Package: MSGARCHelm 0.1.0
MSGARCHelm: Hybridization of MS-GARCH and ELM Model
Implements the three parallel forecast combinations of Markov Switching GARCH and extreme learning machine model along with the selection of appropriate model for volatility forecasting. For method details see Hsiao C, Wan SK (2014). <doi:10.1016/j.jeconom.2013.11.003>, Hansen BE (2007). <doi:10.1111/j.1468-0262.2007.00785.x>, Elliott G, Gargano A, Timmermann A (2013). <doi:10.1016/j.jeconom.2013.04.017>.
Authors:
MSGARCHelm_0.1.0.tar.gz
MSGARCHelm_0.1.0.zip(r-4.5)MSGARCHelm_0.1.0.zip(r-4.4)MSGARCHelm_0.1.0.zip(r-4.3)
MSGARCHelm_0.1.0.tgz(r-4.4-any)MSGARCHelm_0.1.0.tgz(r-4.3-any)
MSGARCHelm_0.1.0.tar.gz(r-4.5-noble)MSGARCHelm_0.1.0.tar.gz(r-4.4-noble)
MSGARCHelm_0.1.0.tgz(r-4.4-emscripten)MSGARCHelm_0.1.0.tgz(r-4.3-emscripten)
MSGARCHelm.pdf |MSGARCHelm.html✨
MSGARCHelm/json (API)
# Install 'MSGARCHelm' in R: |
install.packages('MSGARCHelm', repos = c('https://rrk4910.r-universe.dev', 'https://cloud.r-project.org')) |
- ReturnSeries_data - Return Series Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:8eb1cd535b. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:fcastelmmsgarchelm_BGmsgarchelm_NGmsgarchelm_OLS
Dependencies:askpassclicodacodetoolscolorspacecurlDerivexpmfanplotfansifarverforeachforecastfracdiffgenericsggplot2glmnetgluegreyboxgtablehttrisobanditeratorsjsonlitelabelinglatticelifecyclelmtestmagrittrMAPAMASSMatrixmgcvmimeMSGARCHmunsellneuralnetnlmenloptrnnetnnfornumDerivopensslpillarpkgconfigplotrixpracmaquadprogquantmodR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalesshapesmoothstatmodsurvivalsystexregtibbletimeDatetseriestsutilsTTRurcaurootutf8vctrsviridisLitewithrxtablextszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Extreme Learning Machine Forecasting | fcastelm |
Bates and Granger MS-GARCH-ELM Combination | msgarchelm_BG |
Newbold and Granger MS-GARCH-ELM Combination | msgarchelm_NG |
MS-GARCH-ELM combination based on OLS regession | msgarchelm_OLS |
Return Series Data | ReturnSeries_data |